Mechanism of DNA damage responses induced by exposure to an oligonucleotide homologous to the telomere overhang in melanoma

نویسندگان

  • Ryan T Pitman
  • Luke Wojdyla
  • Neelu Puri
چکیده

T-oligo, an 11-base oligonucleotide homologous to the 3'-telomeric overhang, is a novel, potent therapeutic modality in melanoma and multiple other tumor types. T-oligo is proposed to function in a manner similar to experimental disruption of the telomere overhang and induces DNA damage responses including apoptosis, differentiation and senescence. However, important components involved in T-oligo induced responses are not defined, particularly the role of p53, TRF1 and TRF2 in mediating the T-oligo induced responses. In MU, PM-WK, and MM-MC melanoma cells, exposure to T-oligo upregulates p53 expression and phosphorylation, resulting in cellular differentiation and activation of a caspase-mediated apoptotic cascade. However, siRNA-mediated knockdown of p53 completely blocks T-oligo induced differentiation and significantly decreases apoptosis, suggesting that p53 is an important mediator of T-oligo induced responses. In addition, we characterized the roles of telomere binding proteins, TRF1, TRF2, and tankyrase-1, in T-oligo induced damage responses. We demonstrate that tankyrase-1 activity is required for initiation of T-oligo induced damage responses including p53 phosphorylation and reduction of cellular proliferation. These results highlight TRF1, TRF2, tankyrase-1 and p53 as important elements in T-oligo mediated responses and suggest new avenues for research into T-oligo's mechanism of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that exposure of the telomere 3' overhang sequence induces senescence.

Normal human cells cease proliferation after a finite number of population doublings, a phenomenon termed replicative senescence. This process, first convincingly described by Hayflick and Moorhead [Hayflick, L. & Moorhead, P. S. (1961) Exp. Cell Res. 25, 595-621] for cultured human fibroblasts 40 years ago, is suggested to be a fundamental defense against cancer. Several events have been demon...

متن کامل

Induction of a p95/Nbs1-mediated S phase checkpoint by telomere 3' overhang specific DNA.

Telomere shortening induces a nonproliferative senescent phenotype, believed to reduce cancer risk, and telomeres are involved in a poorly understood manner in responses to DNA damage. Although telomere disruption induces p53 and triggers apoptosis or cell cycle arrest, the features of the disrupted telomere that trigger this response and the precise mechanism involved are poorly understood. Us...

متن کامل

hnRNP C1/C2 and Pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang

BACKGROUND Experimental disruption of the telomere overhang induces a potent DNA damage response and is the target of newly emerging cancer therapeutics. Introduction of T-oligo, an eleven-base oligonucleotide homologous to the 3'-telomeric overhang, mimics telomere disruption and induces DNA damage responses through activation of p53, p73, p95/Nbs1, E2F1, pRb, and other DNA damage response pro...

متن کامل

Pot1 Deficiency Initiates DNA Damage Checkpoint Activation and Aberrant Homologous Recombination at Telomeres

The terminal t-loop structure adopted by mammalian telomeres is thought to prevent telomeres from being recognized as double-stranded DNA breaks by sequestering the 3' single-stranded G-rich overhang from exposure to the DNA damage machinery. The POT1 (protection of telomeres) protein binds the single-stranded overhang and is required for both chromosomal end protection and telomere length regu...

متن کامل

A role for WRN in telomere-based DNA damage responses.

Telomeres cap the ends of eukaryotic chromosomes and prevent them from being recognized as DNA breaks. We have shown that certain DNA damage responses induced during senescence and, at times of telomere uncapping, also can be induced by treatment of cells with small DNA oligonucleotides homologous to the telomere 3' single-strand overhang (T-oligos), implicating this overhang in generation of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013